Stability and convergence of staggered Runge-Kutta schemes for semilinear wave equations
نویسندگان
چکیده
A staggered Runge-Kutta (staggered RK) scheme is the time integration Runge-Kutta type scheme based on staggered grid, which was proposed by Ghrist and Fornberg and Driscoll in 2000. Afterwords, Vewer presented efficiency of the scheme for linear and semilinear wave equations through numerical experiments. We study stability and convergence properties of this scheme for semilinear wave equations. In particular, we prove convergence of a fully discrete scheme obtained by applying the staggered RK scheme to the MOL approximation of the equation.
منابع مشابه
High-order splitting schemes for semilinear evolution equations
We first derive necessary and sufficient stiff order conditions, up to order four, for exponential splitting schemes applied to semilinear evolution equations. The main idea is to identify the local splitting error as a sum of quadrature errors. The order conditions of the quadrature rules then yield the stiff order conditions in an explicit fashion, similarly to that of Runge–Kutta schemes. Fu...
متن کاملSemi - Implicit Runge - Kutta Schemes Forthe Navier - Stokes Equations
The stationary Navier-Stokes equations are solved in 2D with semi-implicit Runge-Kutta schemes, where explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. For model problems stability restrictions and convergence properties are studied. Numerical experiments for the ow over a at plate show that the number of iterations for the...
متن کاملStability under Galerkin Truncation of A-stable Runge–kutta Discretizations in Time
We consider semilinear evolution equations for which the linear part is normal and generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. We approximate their semiflow by an implicit, A-stable Runge–Kutta discretization in time and a spectral Galerkin truncation in space. We show regularity of the Galerkintruncated semiflow and its ...
متن کاملImplicit-explicit higher-order time integration schemes for computations of structural dynamics with fluid-structure interaction
In this paper higher order implicit Runge-Kutta schemes are applied to fluid-structure interaction (FSI) simulations. A staggered approach with a structural predictor is applied to an FSI problem. The equations governing the dynamics of the structure are integrated in time by the Explicit Single Diagonal Implicit Runge-Kutta (ESDIRK) schemes and the arbitrary high order finite volume scheme is ...
متن کاملExplicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems
We analyze explicit Runge–Kutta schemes in time combined with stabilized finite elements in space to approximate evolution problems with a first-order linear differential operator in space of Friedrichs-type. For the time discretization, we consider explicit secondand third-order Runge–Kutta schemes. We identify a general set of properties on the spatial stabilization, encompassing continuous a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 235 شماره
صفحات -
تاریخ انتشار 2011